

TRANSFER PROFILE

Eine gemeinsame Initiative von Bund und Ländern

C₆₀ fullerene-doxorubicin nanocomplex for combinative cancer photodynamic chemotherapy

BACKGROUND

Conventional cancer chemotherapy is limited due to its side effects on normal cells and resistance in cancer cells. We have developed a nanosized drug complex to improve the efficiency of chemotherapy complementing it with photodynamic approach. The photodynamic therapy exploits non-toxic photosensitizer and visible light, which in the presence of oxygen gain a pronounced toxicity. We use a non-covalent complex of a frontline anticancer drug doxorubicin (Dox) with carbon nanostructure C_{60} fullerene, exploiting the latter as a drug carrier and a photosensitizer.

TECHNOLOGY

 C_{60} fullerene exhibits a negligible toxicity against normal cells. The method of C_{60} fullerene-doxorubicin complex synthesis is established in water as well as in physiological solution. C_{60} -Dox complex is characterised with a number of physico-chemical techniques. A portable adjustable light source system is constructed based on high power single chip light emitting diode (LED). The facilitated intracellular accumulation of fullerene-bound Dox highlights extensive C_{60} nanocarrier function. The cancer cells extensively die via compact apoptosis after treatment with C_{60} -Dox complex and LED light irradiation. The C_{60} fullerene-based delivery system is shown to have a potential for the synergistic combination of photodynamic and chemotherapies for the treatment of cancer.

ADVANTAGES

- Easy, cost-effective and fast way of synthesis
- ✓ Proven high stability
- Synergetic combination of photodynamic and chemotherapies against cancer cells

APPLICATIONS

Photodynamic cancer chemotherapy

STATUS

Proof of principle in vitro

Scientifically published: doi:10.1186/s11671-018-2490-9 doi:10.3390/nano9111540 doi:10.1186/s12645-021-00096-6

Contact

Dr. Carsten Hille
Transferscout Life Sciences

Tel.: +49 3375 508 793 lifesciences@innohub13.de www.innohub13.de

Expert

Prof. Marcus Frohme Group leader Tel.: +49 3375 508 249 marcus.frohme@th-wildau.de www.th-wildau.de/ molekularbiologie